
1-Tier 1-Layer Architecture
in ASP.NET

It's time to get our hands dirty with ASP.NET coding! In this chapter, we will
understand through the use of examples:

How every web application is N-tiered by default
How applications based on classic inline ASP are tightly coupled
What 1-tier 1-layer architecture is
Code-behind classes in ASP.NET as another layer in the UI tier
How Data Source Controls fit into the application architecture of ASP.NET
web applications

This chapter is not a guide to how data source controls work, but is rather focused
on the architectural aspects of using them and learning about the advantages and
disadvantages of data source controls, instead of going into the deep technical details
of using them.

Default N-Tier Nature of Web
Applications
When working with web applications, a very important concept to grasp is that by
its very own nature each web application is distributed and is inherently 2-tier by
default (or 3-tier if we include the database as a separate tier). Therefore, it is not
possible to have a single-tier (or 1-tier) architecture at all, when dealing with web
applications. And as we saw in the last chapter, if we include a database and client
browser in our system, then we already have a basic 3-tier application structure.

•

•

•

•

•

1-Tier 1-Layer Architecture in ASP.NET

[32]

Let's understand this concept in detail with a sample configuration for a simple
ASP.NET web application:

Web Server: A machine running a web server such as IIS, handling all HTTP
requests and passing them onto the ASP.NET runtime process. The deployed
project files (ASPX, ASCX, DLLs etc) are published on this server.
Database Server: This will be the physical database such as SQL Server,
Oracle and so on. It can be on the same machine as the web server or on a
separate machine.
Client Browser: This will be the browser that the client is running to view the
web application. The browser runs and uses client machine resources.

The example shows a deployment scenario, where we have the web application
deployed on machine A, which is running IIS.

This is how the configuration will look:

Web Server
(Machine A)

Rendered HTML

Database Server
(Machine B)

Client Browser
(Client's

Machine)

Based on the above diagram, we have a distributed 3-tier architecture with the
following tiers:

Presentation Tier: This is the client browser displaying rendered HTML from
the web server.
Application Tier: This is machine A, which has the web server running along
with the application's UI, business logic, and data access code, all deployed
together on the same machine.
Data Tier: This is the database running on machine B. We can also call this a
Data Layer.

An important point to note is that in ASP.NET web applications, the presentation
tier (browser) is different from the GUI (which is actually the ASPX/ASCX
application frontend).

•

•

•

•

•

•

